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Abstract—Highly stereoselective asymmetric total syntheses of the polypropionate marine defense substance (+)-membrenone C
and its 7-epimer have been achieved. Highlights of the strategy include the utilization of a desymmetrization technique to create
five contiguous chiral centres from a single bicyclic precursor.
� 2006 Elsevier Ltd. All rights reserved.
During the course of our ongoing programme of synthe-
sis of biologically potent natural products we selected
(+)-membrenone C, the polypropionate marine defense
natural product as a synthetic target. Membrenone C
was first isolated along with membrenone A and mem-
brenone B from a Mediterranean mollusc Pleurobran-
chus membranaceus by Ciavatta et al.1 Membrenones
A–C were found to afford protection for the mollusc
from potential predators in the hostile marine environ-
ment. Ciavatta and co-workers assigned structures to
the membrenones by extensive NMR analysis, the rela-
tive and absolute stereochemistry of the natural prod-
ucts was confirmed by synthesis.2,3

The exceptional bioactivity and extreme scarcity of the
natural material together with the novel structure
prompted us to attempt the total synthesis of (+)-mem-
brenone C 1. It was envisioned that (+)-membrenone C
could be obtained from tetraketone 3 as shown in
Scheme 1. The construction of 3 was to be based on a
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disconnection between the C4–C5 and C11–C12 bonds
via double aldol reactions as reported by Perkins and
co-workers.3 The dialdehyde could be derived from a
single bicyclic precursor 6 which in turn is easily synthe-
sized, and was earlier used by our group towards the
synthesis of rifamycin S,4 discodermolide,5 scytophycin
C6 and prelactone B.7

The required lactone5,6 7 was prepared from 6 by a pro-
tocol we had developed and utilized for a number of
syntheses wherein we had exploited a desymmetrization
technique to create six stereogenic centres at once.

Alkylation of the lactone 7 with LHMDS/MeI afforded
compound 54 as the only product which on reductive
opening with LAH furnished the triol 8 (Scheme 2).
The triol 8 on dibenzyl ether protection followed by
PMB8 ether deprotection afforded diol 9. Protection of
the diol as its di-tert-butyl silyl ether 10 was achieved
by using di-tert-butyl silyl bis[trifluoromethanesulfonate]
mbrenone C
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Scheme 1. Retrosynthetic strategy for (+)-membrenone C.
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and 2,6-lutidine. Debenzylation of 10 using a cata-
lytic amount of Pd/C and H2 afforded a diol which on
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PCC oxidation gave dialdehyde 11. Next, the bidirec-
tional chain extending double aldol reaction was
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achieved by reacting with the Ti(IV) enolate of 3-penta-
none in DCM at �78 �C, as previously reported by Per-
kins et al. and Evans et al.9,10 to yield compound 12 with
high diastereoselectivity (Scheme 3). Since the four ste-
reocentres produced in the formation of 12 are not pres-
ent in the final product, we proceeded with the
diastereomeric mixture.

Swern oxidation of 12 gave a quantitative yield of tet-
raketone 13. Since the tetraketone was very sensitive
having readily epimerisable centres, we proceeded with
the crude product. The di-tert-butyl silyl group of 13
was removed by treatment with HFÆPy buffered with ex-
cess pyridine, to give a mixture of diols and hemiacetals.
Rapid acid catalyzed cyclization/dehydration gave a sin-
gle product 2 in 52% overall yield in three steps from 12
(Scheme 3). The synthetic material exhibited the desired
spectral properties of (+)-7-epi-membrenone C and a
specific rotation of ½a�25D +110.6 (c 1.81, CHCl3).

The synthesis of (+)-membrenone C 1, our target mole-
cule was achieved directly from 8 which on di-O-benzyl
protection of the primary alcohols followed by TBS pro-
tection of the secondary alcohol and deprotection of the
PMB ether using DDQ in aqueous DCM11 gave com-
pound 14 in 90% overall yield in three steps. Dess–Mar-
tin oxidation (DMP)12 of the secondary alcohol in 14
gave the ketone 15 which was subjected to desilylation
using 2 equiv of PTSA in methanolic DCM13 to afford
the hydroxy-ketone 16. Our subsequent task was the
1,3-syn-selective reduction of 16 which was achieved
by using DIBAL-H in diethyl ether14 at �100 �C to give
the desired product 17 as the major diastereoisomer with
high diastereoselectivity (>90% ds). The protection of
diol 17 as the di-tert-butyl silylene15 followed by debenz-
ylation gave the diol 18 (Scheme 4). PCC oxidation of
18 gave the compound 4 which on double aldol chain
extension followed by Swern oxidation gave compound
3. Deprotection of the di-tert-butyl silylene group fol-
lowed by cyclization/dehydration then gave 1 in 35%
overall yield from 3 in two steps (Scheme 4).

The synthetic material exhibited spectral properties16

and a specific rotation, ½a�25D +23.6 (c 0.38, CHCl3)
{lit.3 [a]D +23.5 (c 0.63, CHCl3)}, in agreement with
those reported earlier by the Marshall group.2

In summary, the highly stereoselective synthesis of (+)-
membrenone C and its 7-epimer illustrates the utility of
the bicyclic precursor 6 and the desymmetrization ap-
proach control for the five required stereocentres. This
is the first report of the total synthesis of (+)-7-epi-mem-
brenone C.
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